Voriger Thread
Nächster Thread
Drucke Thread
Rate Thread
Seite 5 von 19 1 2 3 4 5 6 7 18 19
Joined: Feb 2003
Posts: 16,049
ranx hat sich selbst vom Thema als Leser gelöscht.
Offline
ranx hat sich selbst vom Thema als Leser gelöscht.
Joined: Feb 2003
Posts: 16,049
moin,

das hier nenne ich Verschränkung:
http://uppix.net/d/5/b/95870e6b8d8e0cccfac22fe786c9ftt.jpg


gute N8


ranx2
::::: Werbung ::::: LR
Joined: Nov 2006
Posts: 3,295
A
Kellchenstrullerer
Offline
Kellchenstrullerer
A
Joined: Nov 2006
Posts: 3,295
das sieht eher aus wie die 7zwerge im wald, wobei einer scheisssse gebaut haben dürfte.grin

Joined: Feb 2003
Posts: 16,049
ranx hat sich selbst vom Thema als Leser gelöscht.
Offline
ranx hat sich selbst vom Thema als Leser gelöscht.
Joined: Feb 2003
Posts: 16,049
Stimmt! grin

hier fehlt einer von den Zwergen :o)
http://uppix.net/7/b/1/ddbfd9156676558140b3f3118ba2ctt.jpg


ranx2
Joined: Jun 2002
Posts: 6,075
Likes: 13
Never underestimate a Schlagschrauber
OP Offline
Never underestimate a Schlagschrauber
Joined: Jun 2002
Posts: 6,075
Likes: 13
nochmal der Bezug zum "Twist Off":

hier der Hauptlink:
http://www.yellowdefender.com/twist_off_1999/twist_off_result/index.htm
auch schon über 10a alt. Der "wissenschaftliche" Ansatz behagt mir immer noch. wink


7.0 Discussion





Introduction

The field of rock crawling is in its early stages and we have a way to go before we know what modifications works best for our vehicles. However, tests like this one provide quantitative information to accelerate our progress. To my knowledge, this test is unique in that we are using fairly rigorous methods to quantify the correlation between observable behavior on the ramp and off-road performance. We were fortunate in that we were able to call on the help of very experienced D90 drivers to assess the changes in the on-road performance of D90s due to these modifications.

The modifications to the 6 fully tested vehicles represented a much broader range of approaches than I anticipated prior to the test. Because of this range, I feel that the data is adequate to support some generalizations on suspension design.

In this section, I will present some engineering observations on the performance of the various approaches. My hope is that these observations will promote discussions within (and outside) the D90 list concerning future developments in suspension designs for rock crawling vehicles. The discussion will be clearly biased toward the off-road performance (at rock crawling speeds) since the D90 list was originally created for the more hard-core off-road D90 driver.





RTI

The quantitative analysis presented in the previous section indicated that there was not a strong correlation between maximum RTI and the trail scores. Since competitors were allowed to use lockers, stability and clearance increased in importance relative to traction. The analysis did show a strong correlation between trail performance and suspension balance (i.e., the front and back axles build articulation equally).





Suspension Balance

To understand the effect of suspension balance, one can compare two hypothetical vehicles. Assume a vehicle with an unbalanced suspension generates all of its articulation from the rear axle and none from the front. Assume a second vehicle with a balanced suspension generates 50% of its articulation from the front and 50% from the rear. Now consider what happens when these two vehicles transverse a section that requires climbing a rock on the right side on otherwise flat ground. Also assume that both vehicles have sufficient articulation that all 4 tires remain on the ground. The unbalanced vehicle with the rigid front end will generate approximately twice the body tilt when its front tire climbs the rock than the vehicle with the balanced suspension. This is because the front axle of the unbalanced vehicle does not articulate relative to the body. When the front wheel drops off and the rear climbs the rock, the unbalanced vehicle experiences no body roll whereas the balanced vehicle experiences the same body roll as when its front tire was on the rock. Generally both vehicles will be able to transverse the rock on flat ground since the rock is within the articulation limits of the vehicles (i.e., all wheels remain on the ground). If this rock is part of an off-camber section that already has a vehicle half way towards its limits of tip over stability, then the additional roll angle caused by a rock can lead to tip over. In such cases, a balanced vehicle will generate less additional roll, allowing it to transverse a significantly taller rock without tipping over since it generates less maximum roll angle during the maneuver. Compounding this is the effect of the angle of the trailing arm of the rear axle.





Trailing Arm Angle

There are several forces that act between each side of the axle and the chassis. These are the spring/shock forces and the forces associated with the trailing arm. All of these forces act along the components (along the spring, along the shock, and along the trailing arm). If the trailing arm is not parallel to the ground, then there will be a vertical force component on the chassis due to this angle. When under power, the arm will be in compression. If the arm is sloped upward (i.e., the wheel is drooping), the force vector will have an upward component. This will cause that side of the vehicle to lift somewhat. With the additional lift, the wheel can drive under the vehicle, increasing the angle more, further increasing the upward forces on the chassis. While all of this is going on, the cg height of the vehicle is increasing. Normally these effects are not significant. However, if a vehicle is climbing an obstacle on a side slope, the vehicle may already be near the limits of its roll over angle. Under these conditions, it does not take much force along the trailing arm to further tilt the vehicle. Eventually, one gets to the point where it feels that all of the drive torque is going into tilting the vehicle and none is going into moving it forward. At this point, the only option is to back down and try a different line (or for the really brave, back down and use some momentum).

How can these upward chassis forces be reduced? One approach is to allow less wheel droop (and hence, less articulation) on the back (OME, SG2) so that the rear wheel cannot climb under the vehicle as much. This can be accomplished either through retained rear springs of sufficient stiffness, or limited axle movement due to shorter shocks. We can also use longer rear arms as this reduces the angle of the trailing arm relative to the ground, reducing the upward component of force on the chassis.

Another approach that sometimes works (this was the case on the last obstacle on Section 2) is to build in more articulation in the front. This will result in less body roll to begin with (SG1 and SG2), reducing the angle of the trailing arm.





How Much Articulation is Too Much?

The answer to this question depends on the trail and the vehicle. When lockers are not used, articulation can have a very large positive effect on traction. However, the use of lockers tends to lessen the traction advantages of articulation. What articulation does provide, when lockers are used, is an improved ability of a wheel to climb a rock. This is because the traction force on the rock, required for the climbing wheel, is less due to the easier upward movement of the wheel, and because the remaining wheels can push the vehicle harder into the rock, generating more traction force on the climbing wheel. Articulation improves off-road performance if there is not so much of it as to negatively effect the stability of the vehicle. Vehicles that spend most of their time in canyon bottoms (such as 21 Road) can probably afford more articulation than those that spend much of their time on off-cambered trails and steep articulated climbs. Vehicles with longer trailing arms, lower cgs, and wider tracks (i.e., buggies) can also possess more articulation. Vehicles with balanced articulation front and back can also afford more total articulation than those that generate most of their articulation from one axle.





Lift

The most direct and important effect of suspension lift is the lift raises the cg height, decreasing the lateral acceleration (or tip angle) at which the vehicle rolls. The high cg (relative to the track), combined with the short wheel base, is the primary reason for rollovers of sport utility vehicles on the road.

Another effect of the suspension lift is it changes the kinematics of the suspension. Raising the front can increase the bump steer because the drag link is no longer parallel to the ground, and decreases dynamic stability because caster is deceased. Most people understand the effect of these changes. A more esoteric change is the possible change in height of the roll centers for each axle. A roll center of an axle is the point that the body appears to be rolling about, in the same vertical plane as the axle. Standard practice is to design the suspension such that the rear axle roll center is higher than it is in the front because this improves straight-line stability of the vehicle. When a D90 is lifted, the rear axle roll center stays the same height (i.e., at the center ball joint), but the front roll center is raised because the center of the Panhard rod also raises. The result is a decrease in directional stability, resulting a bit more darting about on the road in response to road irregularities.

A secondary roll-center related effect is as the chassis is lifted, the average roll center height is raised, but not as much as the cg height. This results in a longer vertical lever arm between the cg and the roll centers. The driver feels this as additional body-roll in corners and off-cambers.

Off road, lifts provide 1) additional body and chassis clearance through boulder fields, 2) the ability to use larger tires to improve differential clearance and increase traction, and 3) increased approach, departure, and break-over angles. Another advantage is one can generate more upward wheel travel before hitting the wheel wells, allowing more articulation without further increasing the cg height of the vehicles due to articulation. There are several disadvantages of large lifts on off-road performance. One is the increased tendency to produce body roll because of the longer vertical lever arm between the cg and the roll centers. One can control dynamic body roll through stiffer shock valving, and dynamic and static body roll through stiffer springs. Unfortunately, stiffer springs and shocks reduce ride comfort, and stiffer springs reduce articulation. Other more serious disadvantages of large lifts are the decreased angles at which the vehicle is stable and the increased weight transfer to the down slope wheels. Vehicles tend to climb better if they can keep as much weight as possible on the front tires. Finally, lifting a vehicle increases the angles in the trailing arms, which leads to the jacking effect discussed earlier.





The 3-Link Front Suspension

Is the 3-link suspension a good thing? A clear advantage of the 3-link front suspension is the design does allow articulation to be increased in the front. This in-turn, allows the articulation to be more balanced front and back which can increase vehicle stability when rock crawling. If designed properly, such a design can also lead to more precision in handling because one can now use much less flexible bushings in the radius/torque arms at the axle.

However, there are downsides to the 3-link design from an engineering point of view:

1. It is difficult to find room for the third link because of the engine. SG’s approach is to put the 3rd link below the two radius arm links.
2. Under hard braking, a third link located below the two radius arms must withstand approximately 3.3 times as much force along its length as "both" the radius/torque arms on the stock design (depending on the diameter of the tires and the vertical separation in the axle mounting points). This is 6.6 times as much axial force as each stock link sees! Since this is a compressive force, a damaged lower third link can easily be buckled (we see this happen to the rear trailing arms under much lower loads than will typically occur at the front axle during braking).
3. These larger forces must to be carried by the axle mounts and the chassis mounts. The Rover uses well-trussed frame mounting points to support the lesser forces of the stock radius arms.
4. Because the forces are significantly higher, fatigue failure is more likely unless everything is properly designed.
5. The larger forces of the 3-link require stiffer bushings in the 3-links to maintain handling. However, stiffer bushings also transmit more shock loads to the chassis. This will accelerate fatigue effects relative to the stock design and decrease the overall shock loads that the design can withstand.
6. Finally, the roll resistance generated by the bushing in the stock front axle acts as an anti-roll bar, especially at larger body roll angles. This has a stabilizing effect on the road. A 3-link suspension will not have this stabilizing effect and one should either use stiffer springs up front than in the back, or use a detachable anti-roll bar up front to maintain the desired understeer characteristics of the vehicle while on the road.

A well-designed 3-link front suspension has good potential to improve the performance of the D90 off road. There is lots of room available in the front wheel wells of the D90 for upward movement. A design to utilize this room during articulation could significantly improve the performance of the D90 without increasing the cg height of the vehicle during articulation. However, the 3-link suspension must be carefully developed, due to the increased loads, and thoroughly tested under very harsh conditions before such a system can be considered commercially viable.



Geld vor Inflation in Sicherheit bringen? Gleichzeitig das Handwerk unterstützen? Fahr' Land Rover!
Joined: Nov 2003
Posts: 16,494
Likes: 5
Offroad-Mc Frosch
Offline
Offroad-Mc Frosch
Joined: Nov 2003
Posts: 16,494
Likes: 5
Kannst du das mal übersetzen ? grin

Ist mir zuviel Ausländisch am frühen Morgen wink


Nichts ist besser als so ein Ding
Joined: Jun 2002
Posts: 6,075
Likes: 13
Never underestimate a Schlagschrauber
OP Offline
Never underestimate a Schlagschrauber
Joined: Jun 2002
Posts: 6,075
Likes: 13
Original geschrieben von landymaniac
[/quote]


7.0 Discussion




Original geschrieben von landymaniac
Introduction

The field of rock crawling is in its early stages and we have a way to go before we know what modifications works best for our vehicles. However, tests like this one provide quantitative information to accelerate our progress. To my knowledge, this test is unique in that we are using fairly rigorous methods to quantify the correlation between observable behavior on the ramp and off-road performance. We were fortunate in that we were able to call on the help of very experienced D90 drivers to assess the changes in the on-road performance of D90s due to these modifications.

The modifications to the 6 fully tested vehicles represented a much broader range of approaches than I anticipated prior to the test. Because of this range, I feel that the data is adequate to support some generalizations on suspension design.

In this section, I will present some engineering observations on the performance of the various approaches. My hope is that these observations will promote discussions within (and outside) the D90 list concerning future developments in suspension designs for rock crawling vehicles. The discussion will be clearly biased toward the off-road performance (at rock crawling speeds) since the D90 list was originally created for the more hard-core off-road D90 driver.

Rockcrawling war ´99 in den Kinderschuhen. Dieser Test war einzigartig darin, die Beziehung von Ramp-Travel-Index (RTI, also das mit einem Vorderrad auf Rampefahren) und Offroad-verhalten zu ergründen. Die 6 Autos repräsentieren ein breiteres Feld von Fahrwerksveränderungen, als sie anfangs zu untersuchten hofften. Und die Ergebnisse sind valide für ein paar Generalaussagen
Und dann kommen ein paar Zukunftsüberlegungen.



Original geschrieben von landymaniac
RTI

The quantitative analysis presented in the previous section indicated that there was not a strong correlation between maximum RTI and the trail scores. Since competitors were allowed to use lockers, stability and clearance increased in importance relative to traction. The analysis did show a strong correlation between trail performance and suspension balance (i.e., the front and back axles build articulation equally).

RampTravelIndex (RTI):
Es zeigte sich, daß keine starke Korrelation zwischen hohem RTI und Punkte-sammeln auf der Teststrecke bestand. Es waren Achssperren erlaubt und dabei wurde Stabilität und Bodenfreiheit wichtiger bezogen auf Traktion. Es zeigte sich eine ganz starke Beziehung von ausgeglichener Verschränkung (Suspension balance) zwischen vorn und hinten und der Performance auf der Piste.



Original geschrieben von landymaniac
Suspension Balance

To understand the effect of suspension balance, one can compare two hypothetical vehicles. Assume a vehicle with an unbalanced suspension generates all of its articulation from the rear axle and none from the front. Assume a second vehicle with a balanced suspension generates 50% of its articulation from the front and 50% from the rear. Now consider what happens when these two vehicles transverse a section that requires climbing a rock on the right side on otherwise flat ground. Also assume that both vehicles have sufficient articulation that all 4 tires remain on the ground. The unbalanced vehicle with the rigid front end will generate approximately twice the body tilt when its front tire climbs the rock than the vehicle with the balanced suspension. This is because the front axle of the unbalanced vehicle does not articulate relative to the body. When the front wheel drops off and the rear climbs the rock, the unbalanced vehicle experiences no body roll whereas the balanced vehicle experiences the same body roll as when its front tire was on the rock. Generally both vehicles will be able to transverse the rock on flat ground since the rock is within the articulation limits of the vehicles (i.e., all wheels remain on the ground). If this rock is part of an off-camber section that already has a vehicle half way towards its limits of tip over stability, then the additional roll angle caused by a rock can lead to tip over. In such cases, a balanced vehicle will generate less additional roll, allowing it to transverse a significantly taller rock without tipping over since it generates less maximum roll angle during the maneuver. Compounding this is the effect of the angle of the trailing arm of the rear axle.

Suspension balance
um das zu verstehen muß man mal 2 Wagen vergleichen - eins, das alle Verschränkung hinten herausholt und vorn steif ist, und eins bei dem beide Achsen 50% gleich verschränken. Beide sollen dabei genug Federweg haben, daß alle Räder Bodenkontakt haben.
Das Auto mit der steifen Vorderachse wird beim Erklimmen eines großen Steins doppelt so viel Karosseriebewegung-/Rollen aufweisen, wie das andere. Wenn das Vorderrad wieder unten ist, und das Hinterrad den Stein überrollt, hat das erste Auto keine Karosserieneigung, das zweite genauso viel wie zum Zeitpunkt, als das Vorderrad ihn überrollte. Auf ebenem Grund noch nicht wild, aber wenn das Fahrzeug schon im Trail ist und so ein Hindernis bereit mit Schräglage angeht, dann kippt das erste Auto ganz schnell um. Anders herum, das "balancierte" Auto kann höhere Hindernisse angehen.

Original geschrieben von landymaniac
Trailing Arm Angle

There are several forces that act between each side of the axle and the chassis. These are the spring/shock forces and the forces associated with the trailing arm. All of these forces act along the components (along the spring, along the shock, and along the trailing arm). If the trailing arm is not parallel to the ground, then there will be a vertical force component on the chassis due to this angle. When under power, the arm will be in compression. If the arm is sloped upward (i.e., the wheel is drooping), the force vector will have an upward component. This will cause that side of the vehicle to lift somewhat. With the additional lift, the wheel can drive under the vehicle, increasing the angle more, further increasing the upward forces on the chassis. While all of this is going on, the cg height of the vehicle is increasing. Normally these effects are not significant. However, if a vehicle is climbing an obstacle on a side slope, the vehicle may already be near the limits of its roll over angle. Under these conditions, it does not take much force along the trailing arm to further tilt the vehicle. Eventually, one gets to the point where it feels that all of the drive torque is going into tilting the vehicle and none is going into moving it forward. At this point, the only option is to back down and try a different line (or for the really brave, back down and use some momentum).

How can these upward chassis forces be reduced? One approach is to allow less wheel droop (and hence, less articulation) on the back (OME, SG2) so that the rear wheel cannot climb under the vehicle as much. This can be accomplished either through retained rear springs of sufficient stiffness, or limited axle movement due to shorter shocks. We can also use longer rear arms as this reduces the angle of the trailing arm relative to the ground, reducing the upward component of force on the chassis.

Another approach that sometimes works (this was the case on the last obstacle on Section 2) is to build in more articulation in the front. This will result in less body roll to begin with (SG1 and SG2), reducing the angle of the trailing arm.


Zugstrebene (Als der Längslenker anner Hinterachse):
Mehrere Kräfte wirken beidseits zwiehcn Achse und Chassis. Solche durch die Feder, und solche in Wirkrichtung der Strebe. Ist die Strebe nicht horizontal, sondern schräg, wird sie eine vertikale Kraft in´s Chassis einleiten. Hängt also ein Rad runter, wird die schräg nach oben zeigende Strebe das Chassis mit einem Teil seiner Kraft nach oben drücken. Dadurch wird die Karosserie etwas angehoben. Dadurch kann der Reifen noch tiefer abtauchen und diesen Effekt wiederum verstärken. Hängt das Fahrzeug schon bedenklich in Schräglage im Hindernis kann´s sein daß man meint alle Kraft wirkt derart, das Fahrzeug nur noch weiter zu kippen und umzuschmeissen. Bleibt dann nur der Rückzug und ein anderer Versuch. Oder man versucht mehr Schwung wenn man besonders helle ist.
Wie kann man diesen Effekt verringern: Eine Möglichkeit ist, das Ausfedern einzuschränken (OME-Fahrwerke). Entweder durch härtere Federn oder kürzere Stoßdämpfer (oder Achsfangbänder). Längere Längslenker konnen auch gewählt werden.
Eine andere Möglichkeit ist, der Vorderachse mehr Bewegung/Verschränkung zu verpassen (SafariGard Autos 1 und 2). Das bewies sich im letzten Hindernis in Sektion 2 im Test.




Original geschrieben von landymaniac
[/quote]
How Much Articulation is Too Much?

The answer to this question depends on the trail and the vehicle. When lockers are not used, articulation can have a very large positive effect on traction. However, the use of lockers tends to lessen the traction advantages of articulation. What articulation does provide, when lockers are used, is an improved ability of a wheel to climb a rock. This is because the traction force on the rock, required for the climbing wheel, is less due to the easier upward movement of the wheel, and because the remaining wheels can push the vehicle harder into the rock, generating more traction force on the climbing wheel. Articulation improves off-road performance if there is not so much of it as to negatively effect the stability of the vehicle. Vehicles that spend most of their time in canyon bottoms (such as 21 Road) can probably afford more articulation than those that spend much of their time on off-cambered trails and steep articulated climbs. Vehicles with longer trailing arms, lower cgs, and wider tracks (i.e., buggies) can also possess more articulation. Vehicles with balanced articulation front and back can also afford more total articulation than those that generate most of their articulation from one axle.

Wann ist viel Verschränkung zu viel Verschränkung:
hängt vom Auto und Gelände ab (logo). Verschränkung ist hilfreich, wenn keine Sperren da sind. Sperren mildern, andersherum, die Not zu besonders viel Verschränkung. Dabei hilft Verschränkung auch beim Sperreneinsatz, einen Fels zu erklettern: denn die nötige Traktionskraft des kletternden Rades ist geringer weil die anderen Räder ebendieses Rad macht ihrer Traktion stärker gegen den Fels zerren. Und dabei erhöhen sie die Traktion des kletternden Rades. Solange die Rollbewegung (also diese o.g. Suspension balance bzw. body-roll) durch die Verschränkung nicht zu groß ist, nutzt viel Verschränkung. Autos, die nur im Gelände sind, vertragen mehr Verschränkung und Autos mit tiefem Schwerpunkt + langen Achsstreben + breiter Spur auch. So wie auch die Autos mit ausgeglichener Verschränkung vorn <> hinten.



Original geschrieben von landymaniac
Lift

The most direct and important effect of suspension lift is the lift raises the cg height, decreasing the lateral acceleration (or tip angle) at which the vehicle rolls. The high cg (relative to the track), combined with the short wheel base, is the primary reason for rollovers of sport utility vehicles on the road.

Another effect of the suspension lift is it changes the kinematics of the suspension. Raising the front can increase the bump steer because the drag link is no longer parallel to the ground, and decreases dynamic stability because caster is deceased. Most people understand the effect of these changes. A more esoteric change is the possible change in height of the roll centers for each axle. A roll center of an axle is the point that the body appears to be rolling about, in the same vertical plane as the axle. Standard practice is to design the suspension such that the rear axle roll center is higher than it is in the front because this improves straight-line stability of the vehicle. When a D90 is lifted, the rear axle roll center stays the same height (i.e., at the center ball joint), but the front roll center is raised because the center of the Panhard rod also raises. The result is a decrease in directional stability, resulting a bit more darting about on the road in response to road irregularities.

A secondary roll-center related effect is as the chassis is lifted, the average roll center height is raised, but not as much as the cg height. This results in a longer vertical lever arm between the cg and the roll centers. The driver feels this as additional body-roll in corners and off-cambers.

Off road, lifts provide 1) additional body and chassis clearance through boulder fields, 2) the ability to use larger tires to improve differential clearance and increase traction, and 3) increased approach, departure, and break-over angles. Another advantage is one can generate more upward wheel travel before hitting the wheel wells, allowing more articulation without further increasing the cg height of the vehicles due to articulation. There are several disadvantages of large lifts on off-road performance. One is the increased tendency to produce body roll because of the longer vertical lever arm between the cg and the roll centers. One can control dynamic body roll through stiffer shock valving, and dynamic and static body roll through stiffer springs. Unfortunately, stiffer springs and shocks reduce ride comfort, and stiffer springs reduce articulation. Other more serious disadvantages of large lifts are the decreased angles at which the vehicle is stable and the increased weight transfer to the down slope wheels. Vehicles tend to climb better if they can keep as much weight as possible on the front tires. Finally, lifting a vehicle increases the angles in the trailing arms, which leads to the jacking effect discussed earlier.

Lift ( Höherlegung ):
Der wichtigste Negativpunkt ist der höhere Schwerpunkt und schlechtere Kippresistenz. Auch schlecht ist Bump-Steer, weil die Lenkstange nicht mehr parallel zum Boden steht und beim Einfedern dadurch eine Lenkbewegung entsteht. Die Lenkgeometrie (Nachlauf) wird auch negativ beeinflusst. Das ist einfach zu verstehen, esoterisch wird es beim Roll-Center. Damit gemeint ist der Drehpunkt um den die Karosserie zu neigen scheint, also die Bewegung in derselben vertikalen Ebene wie die Achse. Es ist üblich die Roll-center der Achsen so zu wählen, daß der der Hinterachse höher liegt als der vorne, weil das den Geradeauslauf stabilisiert. Wenn ein Defender geliftet wird, bleibt der ACHS-Rollpunkt der Hinterachse gleich (=Kugelgelenk A-Rahmen) aber der der Vorderachse steigt, weil der PAnhardstab mit"geliftet" wurde. Die Spurstabilität auf der Straße leidet darunter ein bißchen bei Straßenunregelmäßigkeiten.
Nächster Punkt ist, daß der Gesamt-Roll-centerpunkt angehoben wird, aber nicht so sehr, wie der Fahrzeugschwerpunkt gehoben wurde. Das vergrößert einen Hebelarm, der in Kurven merken läßt dass die Fahrzeugneigung größer wird.
Auf der Habenseite ist die Bodenfreiheit, Platz für größere Reifen, und bessere Böschungswinkel. Auch ist der Einfederweg höher bevor der Achsanschlag wirkt.
Nachteile Offroad sind eben: stärkere Karosserierollneigung. Man kann versuchen, den dynamischen Body-roll durch steifere Dämpfer abzufangen und den dynamischen und statischen Body-Roll durch härtere Federn. Letzteres verringert den Fahrkomfort und die Verschränkung.
Ernstere Nachteile sind der schlechtere Kippwinkel und die höhere Last auf den "schiebenden" Rädern - Autos scheinen besser irgendwo hochzuklettern, wenn die Vorderräder mehr belastet sind.
Und dann ist da noch die Sache mit dem stark geknickten hinteren Längslenker, der das Chassis hochhebt.



Original geschrieben von landymaniac
The 3-Link Front Suspension

Is the 3-link suspension a good thing? A clear advantage of the 3-link front suspension is the design does allow articulation to be increased in the front. This in-turn, allows the articulation to be more balanced front and back which can increase vehicle stability when rock crawling. If designed properly, such a design can also lead to more precision in handling because one can now use much less flexible bushings in the radius/torque arms at the axle.

However, there are downsides to the 3-link design from an engineering point of view:

1. It is difficult to find room for the third link because of the engine. SG’s approach is to put the 3rd link below the two radius arm links.
2. Under hard braking, a third link located below the two radius arms must withstand approximately 3.3 times as much force along its length as "both" the radius/torque arms on the stock design (depending on the diameter of the tires and the vertical separation in the axle mounting points). This is 6.6 times as much axial force as each stock link sees! Since this is a compressive force, a damaged lower third link can easily be buckled (we see this happen to the rear trailing arms under much lower loads than will typically occur at the front axle during braking).
3. These larger forces must to be carried by the axle mounts and the chassis mounts. The Rover uses well-trussed frame mounting points to support the lesser forces of the stock radius arms.
4. Because the forces are significantly higher, fatigue failure is more likely unless everything is properly designed.
5. The larger forces of the 3-link require stiffer bushings in the 3-links to maintain handling. However, stiffer bushings also transmit more shock loads to the chassis. This will accelerate fatigue effects relative to the stock design and decrease the overall shock loads that the design can withstand.
6. Finally, the roll resistance generated by the bushing in the stock front axle acts as an anti-roll bar, especially at larger body roll angles. This has a stabilizing effect on the road. A 3-link suspension will not have this stabilizing effect and one should either use stiffer springs up front than in the back, or use a detachable anti-roll bar up front to maintain the desired understeer characteristics of the vehicle while on the road.

A well-designed 3-link front suspension has good potential to improve the performance of the D90 off road. There is lots of room available in the front wheel wells of the D90 for upward movement. A design to utilize this room during articulation could significantly improve the performance of the D90 without increasing the cg height of the vehicle during articulation. However, the 3-link suspension must be carefully developed, due to the increased loads, and thoroughly tested under very harsh conditions before such a system can be considered commercially viable.

3-Link Vorderachse (hatte damals SafariGard neu im Programm):

Klarer Pluspunkt ist, daß dieses Prinzip die Beweglichkeit der Vorderachse mehrt. Gut - im Sinne ausgeglichener Verschränkung. Wenn´s gut gemacht ist, kann auch das Fahrverhalten besser sein, weil die bessere Achsbewegung erlaubt, steifere Achsgummis oder Gelenke zu benutzen.
Aus technischer Sicht bleiben folgende Aspekte/Nachteile:
1) es ist schwer, Platz zu finden. SafariGard tut die 3.Strebe unterhalb der beiden Schubstreben.
2) beim starken Bremsen muß diese 3.Strebe 3,3mal soviel aushalten, wie die beiden originalen Schubstreben vom Rover. Also 6,6x soviel Kraft wie jeder der beiden Rover-streben maximal sehen wird. Weil die 3.Strebe auf Druck belastet wird, kann sie leichter verformt werden. Das sehen wir an der Hinterachse schon bei viel kleineren Belastungen, als sie beim Bremsen an der Vorderachse auftreten.
3) Die Kräfte müssen in´s Chassis eingeleitet werden. Rover hat da stabile Knotenbleche um die relativ geringern Kräfte aufzunehmen.
4) Materialermüdung ist angesichts der höheren Belastungen viel wahrscheinlicher
5) die höheren Kräfte bedingen, daß man im 3-link steifere Fahrwerksbuchsen nehmen muß, um das Fahrverhalten gut zu behalten. Dadurch werden Stoßbelastungen weniger gut gepuffert und Punkt 4) wird umso bedeutender
6) Die Buchsen in den Schubstreben von Rover "sträuben" sich sozusagen gegen Verschränkung und wirken dadurch wie ein Anti-Roll-bar (hab´ gerade echt das deutsche Wort dafür vergessen). Das macht die 3-linkaufhängung nicht und deswegen müsste man steifere Federn vorn (vorn dabei hier steifer als hinten) nehmen, oder einen Anti-roll-bar vorn, damit das auf der Straße gewünschte Untersteuern erhalten bleibt (für´s Gelände könnte der dann abzukoppeln sein).

Ein gut gemachtes 3-Link-system hat viel Potential im Gelände und der Defender viel Platz im Radkasten für Federwege. Nutzt man diesen Raum durch eine bessere Aufhängung, kann der Wagen mehr leisten ohne daß der Schwerpunkt ungünstig beeinflusst wird. Das System muß aber sorgfältig designed werden, eben wegen der stärkeren Belastungen, bevor es auf die Straße bzw. vertrieben werden dürfte.
(Hintergrund,IIRC, war daß bei dem Test die 3-link Vorderachsaufhängung vom SafariGard Testwagen gebrochen ist. Auf der Straße, meine ich. Ist nichts passiert. Aber war keiner begeistert.


Geld vor Inflation in Sicherheit bringen? Gleichzeitig das Handwerk unterstützen? Fahr' Land Rover!
Joined: Jun 2002
Posts: 6,075
Likes: 13
Never underestimate a Schlagschrauber
OP Offline
Never underestimate a Schlagschrauber
Joined: Jun 2002
Posts: 6,075
Likes: 13
Original geschrieben von Yankee
Kannst du das mal übersetzen

so halbwegs.

Was der Mensch sich damals sicher noch nicht vorstellen möchte war, daß man wild darauf wird die Hinterachse extrem ausfedern zu lassen und dabei die Feder herausspringen zu lassen und dieses Gehabe.

Ich mag diesen Test. Habe ich gelesen, als er noch relativ aktuell war. Beim Auto ist es wie im richtigen Leben - mehrere Effekte wirken gleichzeitig. Nur einen herauszuholen, den zu bearbeiten und dann zu bewerben ist nicht so der Bringer.


Geld vor Inflation in Sicherheit bringen? Gleichzeitig das Handwerk unterstützen? Fahr' Land Rover!
Joined: May 2002
Posts: 12,559
Homo Stupidus
Offline
Homo Stupidus
Joined: May 2002
Posts: 12,559
Zitat
wild darauf wird die Hinterachse extrem ausfedern zu lassen und dabei die Feder herausspringen zu lassen


oder:
wie bastel ich mir ein kipperle


Solange Gerste draußen wächst ist Bier mein Gemüse.





Joined: Jun 2002
Posts: 6,075
Likes: 13
Never underestimate a Schlagschrauber
OP Offline
Never underestimate a Schlagschrauber
Joined: Jun 2002
Posts: 6,075
Likes: 13
eben. Für unsere Autos, die ja durchaus nicht reine Rock-Crawler sind, sondern auch mal schnell fahren müssen, und das vielleicht auch noch weit, darf man "Werks-setup-Konstanten" nicht ganz aufgeben.
Für einen reinen Rockcrawler geht kaum ein Weg am 3-link der Vorderachse vorbei, scheint´s, jedenfalls wurde mir gerade etwas klarer, warum ein Ami auf dem Pirate4x4-Forum meinte, daß er mit Rover-Schubstreben häufiger umgekippt ist und mit dem 3-link viel, viel seltener.


Geld vor Inflation in Sicherheit bringen? Gleichzeitig das Handwerk unterstützen? Fahr' Land Rover!
Joined: May 2002
Posts: 12,559
Homo Stupidus
Offline
Homo Stupidus
Joined: May 2002
Posts: 12,559
was sind diese 3-link für dinger?
gibts da ein foto von?


Solange Gerste draußen wächst ist Bier mein Gemüse.





Seite 5 von 19 1 2 3 4 5 6 7 18 19

Link Copied to Clipboard
Forum Search
Member Spotlight
Posts: 64
Joined: June 2002
::: VIERMALVIER.DE::: Werbung ro
Aktivste Themen(Ansichten)
17,603,297 Hertha`s Pinte
7,416,638 Pier 18
3,495,209 Auf`m Keller
3,340,520 Musik-Empfehlungen
2,512,944 Neue Kfz-Steuer
2,323,324 Alte Möhren ...
Wer ist online
0 members (), 400 guests, and 0 robots.
Key: Admin, Global Mod, Mod
::WERBUNG:: Klick to sponsor VMV
Top Likes Received (30 Days)
marcus 2
DaPo 2
Pata 1
BedaB 1
Troll 1
Heutige Geburtstage
DerPurist
Neueste Mitglieder
Egika, king463, Dome, Schraubermax, Lukas44
9,894 Registrierte Benutzer
Top Schreiber
DaPo 26,375
Yankee 16,494
Ozymandias 16,233
ranx 16,049
RoverLover 15,075
:::: VIERMALVIER.DE:::: WERBUNG
Foren Statistiken
Foren36
Themen44,250
Posts671,714
Mitglieder9,894
Most Online1,320
Jan 2nd, 2020
Powered by UBB.threads™ PHP Forum Software 7.7.5